- 3 Estabelecer que o pagamento da contribuição referida no n.º 1 deve ser efectuado em quatro prestações, através da emissão de notas promissórias de igual montante, com o valor de € 1 432 590 cada, devendo a 1.ª ser emitida até 30 dias após o envio ao Banco Mundial do instrumento de compromisso de Portugal, a 2.ª até 30 de Novembro de 2007, a 3.ª até 30 de Novembro de 2008 e a 4.ª até 30 de Novembro de 2009.
- 4 Estabelecer que as notas promissórias referidas no número anterior sejam resgatadas de acordo com um plano de resgates de 10 anos, com o início em 2007.
- 5 Determinar que a emissão das notas promissórias referidas no n.º 3 fique a cargo do Instituto de Gestão do Crédito Público, I. P., e nelas constem os seguintes elementos:
 - a) O número de ordem;
 - b) O capital representado;
 - c) A data de emissão;
- d) Os direitos, isenções e garantias de que gozam e que são os dos restantes títulos da dívida que lhes sejam aplicáveis;
 - e) Os diplomas que autorizam a emissão.
- 6 Determinar que as notas promissórias sejam assinadas, por chancela, pelo Ministro de Estado e das Finanças, com faculdade de delegação, e pelo presidente e por um vogal do conselho directivo do Instituto de Gestão do Crédito Público, I. P., com a aposição do selo branco deste Instituto.
- 7 Estabelecer que cabe ao Ministro de Estado e das Finanças, com faculdade de delegação, praticar todos os actos necessários à realização do previsto nos números anteriores.
- 8 Determinar que a presente resolução produz efeitos a partir da data da sua aprovação.

Presidência do Conselho de Ministros, 1 de Março de 2007. — O Primeiro-Ministro, *José Sócrates Carvalho Pinto de Sousa*.

Declaração de Rectificação n.º 22/2007

Segundo comunicação da Presidência do Conselho de Ministros, a Portaria n.º 176/2007, publicada no *Diário da República*, 1.ª série, n.º 29, de 9 de Fevereiro de 2007, cujo original se encontra arquivado nesta Secretaria-Geral, saiu com as seguintes inexactidões, que assim se rectificam:

- 1 No n.º 6 do artigo 4.º, «Financiamento», onde se lê «O IPJ, até 31 de Março de cada ano,» deve ler-se «a) O IPJ, até 31 de Março de cada ano,».
- 2 No n.º 1 do artigo 7.º, «Sanções», onde se lê «previstos no artigo 2.º» deve ler-se «previstos no n.º 3 do artigo 3.º», no n.º 2, onde se lê «a alínea b) do artigo 4.º» deve ler-se «a alínea b) do artigo 5.º» e, no n.º 3, onde se lê «da alínea b) do n.º 1 do artigo 5.º,» deve ler-se «da alínea b) do n.º 1 do artigo 6.º,».
- 3 No n.º 1 do artigo 13.º, «Norma transitória», onde se lê «disposto no n.º 2 do artigo 1.º» deve ler-se «disposto no n.º 2 do artigo 2.º» e, no n.º 2, onde se lê «alínea *b*) do artigo 4.º» deve ler-se «alínea *b*) do artigo 5.º».

Secretaria-Geral da Presidência do Conselho de Ministros, 19 de Março de 2007. — O Secretário-Geral, *José M. Sousa Rego*.

MINISTÉRIO DA ADMINISTRAÇÃO INTERNA

Decreto-Lei n.º 67/2007

de 26 de Março

O presente decreto-lei transpõe para a ordem jurídica interna a Directiva n.º 2005/21/CE, da Comissão, de 7 de Março, e aprova o Regulamento Relativo às Medidas a Tomar contra a Emissão de Poluentes Provenientes dos Motores Diesel Destinados à Propulsão dos Veículos.

A Directiva n.º 72/306/CEE, com a última redacção que lhe é conferida pela Directiva n.º 2005/21/CE, é uma das directivas específicas do procedimento de homologação CE mencionado no Decreto-Lei n.º 72/2000, de 6 de Maio, alterado pelos Decretos-Leis n.ºs 92/2002, de 12 de Abril, 40/2003, de 11 de Março, 72-B/2003, de 14 de Abril, 220/2004, de 4 de Novembro, 3/2005, de 5 de Janeiro, e 178/2005, de 28 de Outubro.

E necessário alinhar os requisitos técnicos relativos à fonte luminosa do opacímetro utilizado para a medição da opacidade do tubo de escape com o Regulamento da Comissão Económica das Nações Unidas para a Europa (UNECE) n.º 24 e com as normas internacionais, sendo igualmente conveniente alinhar o combustível utilizado para medir a opacidade do tubo de escape com o combustível autorizado para a medição de emissões, conforme indicado no Regulamento Respeitante ao Nível das Emissões Poluentes Provenientes dos Motores Alimentados a Diesel, Gás Natural Comprimido ou Gás de Petróleo Liquefeito Utilizados em Automóveis, aprovado pelo Decreto-Lei n.º 13/2002, de 26 de Janeiro, com a última redacção conferida pelo Decreto-Lei n.º 237/2002, de 5 de Novembro.

Pelo presente decreto-lei pretende-se, também, proceder à regulamentação do n.º 3 do artigo 114.º do Código da Estrada, aprovado pelo Decreto-Lei n.º 114/94, de 3 de Maio, com a última redacção que lhe foi conferida pelo Decreto-Lei n.º 44/2005, de 23 de Fevereiro.

Assim:

Nos termos da alínea *a*) do n.º 1 do artigo 198.º da Constituição, o Governo decreta o seguinte:

Artigo 1.º

Objecto

- 1 O presente decreto-lei transpõe para a ordem jurídica interna a Directiva n.º 2005/21/CE, da Comissão, de 7 de Março, que adapta ao progresso técnico a Directiva n.º 72/306/CEE, do Conselho, relativa às medidas a tomar contra a emissão de poluentes provenientes dos motores diesel destinados à propulsão dos veículos.
- 2 É aprovado, em anexo ao presente decreto-lei, que dele faz parte integrante, o Regulamento Relativo às Medidas a Tomar contra a Emissão de Poluentes Provenientes dos Motores Diesel Destinados à Propulsão dos Veículos, cujos anexos fazem dele parte integrante.

Artigo 2.º

Efeitos

Se não forem cumpridas as disposições do Regulamento aprovado pelo presente decreto-lei, a Direcção-Geral de Viação, por motivos relacionados com a emissão de poluentes provenientes dos motores diesel, para um novo de modelo de veículo:

- a) Não pode conceder homologações CE nos termos do Regulamento da Homologação CE de Modelo de Automóveis e Reboques, Seus Sistemas, Componentes e Unidades Técnicas, aprovado pelo Decreto-Lei n.º 72/2000, de 6 de Maio, alterado pelos Decretos-Leis n.ºs 92/2002, de 12 de Abril, 40/2003, de 11 de Março, 72-B/2003, de 14 de Abril, 220/2004, de 4 de Novembro, 3/2005, de 5 de Janeiro, e 178/2005, de 28 de Outubro;
- b) Deve recusar a concessão de homologações nacionais

Artigo 3.º

Homologações anteriores

O presente decreto-lei não prejudica as homologações previamente concedidas, nem impede a respectiva extensão nos termos da legislação ao abrigo da qual foram inicialmente concedidas.

Artigo 4.º

Norma revogatória

É revogado o anexo I da Portaria n.º 517-A/96, de 27 de Setembro, com a redacção que lhe foi dada pela Portaria n.º 1080/97, de 29 de Outubro, no que se refere aos motores diesel (opacidade dos gases de escape).

Visto e aprovado em Conselho de Ministros de 8 de Fevereiro de 2007. — José Sócrates Carvalho Pinto de Sousa — Eduardo Arménio do Nascimento Cabrita — Luís Filipe Marques Amado — Francisco Carlos da Graça Nunes Correia.

Promulgado em 7 de Março de 2007.

Publique-se.

O Presidente da República, Aníbal Cavaco Silva.

Referendado em 9 de Marco de 2007.

O Primeiro-Ministro, José Sócrates Carvalho Pinto de Sousa.

ANEXO

REGULAMENTO RELATIVO ÀS MEDIDAS A TOMAR CONTRA A EMISSÃO DE POLUENTES PROVENIENTES DOS MOTORES DIESEL DESTINADOS À PROPULSÃO DOS VEÍCULOS

CAPÍTULO I

Definições, pedido de homologação CE, homologação CE, símbolo do valor corrigido do coeficiente de absorção, especificações e ensaios, modificações do modelo, conformidade da produção.

SECÇÃO I

Das definições

Artigo 1.º

Definições

Para efeitos do disposto no presente Regulamento, entende-se por:

a) «Veículo» qualquer veículo movido por um motor diesel destinado a transitar na estrada, com ou sem carroçaria, tendo pelo menos quatro rodas e uma velo-

cidade máxima, por construção, superior a 25 km/h, com excepção dos veículos que se deslocam sobre carris, dos tractores agrícolas e florestais e de todas as máquinas móveis:

- b) «Modelo de veículo no que respeita à limitação das emissões dos poluentes provenientes do motor» veículos que não apresentem entre eles diferenças essenciais, podendo estas diferenças dizer respeito, nomeadamente, às características do veículo e do motor definidas no anexo I do presente Regulamento;
- c) «Motor diesel» motor que funciona segundo o princípio de «ignição por compressão»;
- d) «Dispositivo de arranque a frio» dispositivo que, quando actuado, aumenta temporariamente a quantidade de combustível fornecida ao motor e que está previsto para facilitar o arranque do motor;
- e) «Opacímetro» aparelho destinado a medir de uma maneira contínua os coeficientes de absorção luminosa dos gases de escape emitidos pelos veículos.

SECÇÃO II

Do pedido e da homologação CE

Artigo 2.º

Pedido de homologação CE

- 1 O pedido de homologação CE de um modelo de veículo no que diz respeito às suas emissões de poluentes provenientes de motores diesel deve ser apresentado pelo fabricante, em conformidade com o disposto no artigo 3.º do Regulamento da Homologação CE de Modelo de Automóveis e Reboques, Seus Sistemas, Componentes e Unidades Técnicas, aprovado pelo Decreto-Lei n.º 72/2000, de 6 de Maio, alterado pelos Decretos-Leis n.ºs 92/2002, de 12 de Abril, 40/2003, de 11 de Março, 72-B/2003, de 14 de Abril, 220/2004, de 4 de Novembro, 3/2005, de 5 de Janeiro, e 178/2005, de 28 de Outubro, abreviadamente designado por Regulamento da Homologação CE.
- 2 Um modelo da ficha de informações consta no anexo I do presente Regulamento.
- 3 Deve ser apresentado à entidade competente encarregada dos ensaios de homologação referidos na secção IV um motor com os equipamentos previstos no anexo I, para a sua adaptação sobre o veículo a homologar.
- 4 No caso de o construtor o solicitar e a entidade competente encarregada dos ensaios de homologação o aceitar, pode ser efectuado um ensaio representativo do tipo de veículo a homologar.

Artigo 3.º

Homologação CE

- 1 No caso de os requisitos relevantes serem satisfeitos, deve ser concedida a homologação CE em conformidade com o disposto nos n.ºs 6 a 8 do artigo 11.º do Regulamento da Homologação CE.
- 2 No anexo II do presente Regulamento consta um modelo da ficha de homologação CE.
- 3 A cada modelo de veículo deve ser atribuído um número de homologação conforme com o anexo VII do Regulamento da Homologação CE, não podendo a Direcção-Geral de Viação atribuir o mesmo número a outro modelo de veículo.

SECÇÃO III

Símbolo do valor corrigido do coeficiente de absorção

Artigo 4.º

Símbolo

- 1 Todo o veículo conforme a um modelo de veículo homologado em execução do presente Regulamento deve ter aposto, de modo visível num local facilmente acessível e indicado na adenda à ficha de homologação que consta do anexo II, um símbolo que representa um rectângulo no interior do qual figura o valor corrigido do coeficiente de absorção, obtido quando da homologação ao longo do ensaio em aceleração livre, expresso em m⁻¹ e determinado na homologação segundo o processo descrito no n.º 3.2 do anexo v do presente Regulamento.
- 2 O símbolo referido no número anterior deve ser nitidamente legível e indelével.
- 3 No anexo III do presente Regulamento figura um exemplo do símbolo do valor corrigido do coeficiente de absorção.

SECÇÃO IV

Características e ensaios

Artigo 5.º

Generalidades

Os elementos susceptíveis de influenciar as emissões de poluentes devem ser concebidos, construídos e montados para que, em condições normais de utilização e apesar das vibrações às quais pode estar sujeito, o veículo possa satisfazer as prescrições técnicas constantes do presente Regulamento.

Artigo 6.º

Especificações relativas aos dispositivos de arranque a frio

- 1 O dispositivo de arranque a frio deve ser concebido e realizado para que não possa ser posto a funcionar, nem mantido em funcionamento, quando o motor esteja nas suas condições normais de funcionamento.
- 2 As prescrições constantes no número anterior não são aplicáveis se, pelo menos, uma das condições seguintes for satisfeita:
- a) Com o dispositivo de arranque a frio em serviço, o coeficiente de absorção luminosa dos gases emitidos pelo motor em regime estabilizado, medido segundo o processo previsto no anexo IV, não ultrapassa os limites previstos no anexo VI do presente Regulamento;
- b) A manutenção em acção do dispositivo de arranque a frio provoca a paragem do motor num prazo razoável.

Artigo 7.º

Especificações relativas às emissões de poluentes

1 — A medição das emissões de poluentes pelo modelo de veículo apresentado para homologação CE deve ser efectuada em conformidade com os dois métodos descritos nos anexos IV e V do presente Regulamento, respeitante um aos ensaios a regimes estabilizados e o outro aos ensaios em aceleração livre, procedendo-se a este último, a fim de fornecer um valor de referência às administrações que utilizam este método para o controlo dos veículos em serviço.

- 2 O valor da emissão de poluentes, medido em conformidade com o método descrito no anexo IV, não deve ultrapassar os limites prescritos no anexo VI do presente Regulamento.
- 3 Para os motores com sobrealimentador accionado pelos gases de escape, o valor do coeficiente de absorção, medido em aceleração livre, deve ser no máximo igual ao valor limite previsto no anexo VI, para o valor do fluxo nominal correspondente ao coeficiente de absorção máximo medido nos ensaios a regimes estabilizados aumentado de 0,5 m⁻¹.
- 4 São admitidos aparelhos de medida equivalentes, devendo ser demonstrada a sua equivalência para o motor considerado, no caso de ser utilizado um aparelho diferente dos descritos no anexo VII do presente Regulamento.

SECÇÃO V

Modificações do modelo e alterações das homologações e conformidade da produção

Artigo 8.º

Modificações do modelo e alterações das homologações

No caso de modificações do modelo de veículo homologado nos termos do presente Regulamento, aplicam-se as disposições constantes da secção III do Regulamento da Homologação CE.

Artigo 9.º

Conformidade da produção

- 1 As medidas destinadas a garantir a conformidade da produção devem ser tomadas de acordo com o disposto no artigo 32.º do Regulamento da Homologação CE.
- 2 A conformidade do veículo com o modelo homologado, no que diz respeito à emissão de poluentes provenientes dos motores diesel, é verificada com base nos resultados enumerados na adenda à ficha de homologação que figura no anexo II, devendo, no controlo de um veículo extraído da série, os ensaios ser efectuados nas seguintes condições:
- *a*) O veículo não rodado é submetido ao ensaio em aceleração livre previsto no anexo v do presente Regulamento, sendo considerado conforme com o tipo homologado se o valor obtido para o coeficiente de absorção não ultrapassa mais de 0,5 m⁻¹ o valor indicado no símbolo sobre o valor corrigido deste coeficiente;
- b) No caso em que o valor obtido no ensaio referido na alínea anterior ultrapassa em mais de 0,5 m⁻¹ o valor indicado no símbolo, o veículo do modelo considerado ou o seu motor deve ser submetido ao ensaio a regimes estabilizados na curva de plena carga, previsto no anexo IV, não devendo o valor das emissões ultrapassar os limites prescritos no anexo VI do presente Regulamento.

CAPÍTULO II

Ensaio a regimes estabilizados na curva de plena carga e ensaio em aceleração livre

Artigo 10.º

Ensaio a regimes estabilizados na curva de plena carga

O ensaio a regimes estabilizados na curva de plena carga é descrito no anexo IV do presente Regulamento.

Artigo 11.º

Ensaio em aceleração livre

O ensaio em aceleração livre é descrito no anexo v do presente Regulamento.

ANEXO I

[a que se referem a alínea b) do artigo 1.º e os n.ºs 2 e 3 do artigo 2.º do Regulamento]

Ficha de informações n.º . . .

Nos termos do anexo I da Directiva n.º 70/156/CEE, do Conselho (*) relativa à homologação CE de um veículo no que diz respeito às medidas a tomar contra a emissão de poluentes provenientes dos motores diesel destinados à propulsão dos veículos.

(Directiva n.º 72/306/CEE, com a última redacção que lhe foi dada pela Directiva n.º . . ./.../CE).

As seguintes informações, se aplicáveis, devem ser fornecidas em triplicado e incluir um índice. Se houver desenhos, devem ser fornecidos à escala adequada e com pormenor suficiente, em formato A4 ou dobrados nesse formato. Se houver fotografias, estas devem ter o pormenor suficiente.

No caso de os sistemas, componentes ou unidades técnicas possuírem controlos electrónicos, fornecer as informações relevantes relacionadas com o seu desempenho.

- 0 Generalidades:
- 0.1 Marca (firma do fabricante): . . .
- 0.2 Modelo e designação(ões) comercial(is) geral(is): . . .
- 0.3 Meios de identificação do modelo, se marcados no veículo (b): . . .
 - 0.3.1 Localização dessa marcação: . . .
 - 0.4 Categoria do veículo (c): . . .
 - 0.5 Nome e morada do fabricante: . . .
 - 0.8 Morada(s) da(s) linha(s) de montagem: ...
 - 1 Constituição geral do veículo:
- 1.1 Fotografias e ou desenhos de um veículo representativo: . . .
 - 3 Motor(q):
 - 3.1 Fabricante: . . .
- 3.1.1 Código do fabricante para o motor (conforme marcado no motor, ou outro meio de identificação): . . .
 - 3.2 Motor de combustão interna:
- 3.2.1.1 Princípio de funcionamento: ignição comandada/ignição por compressão, quatro tempos/dois tempos (1):
 - 3.2.1.2 Número e disposição dos cilindros: . . .
 - 3.2.1.2.1 Diâmetro (r): . . . mm;
 - 3.2.1.2.2 Curso (r): . . . mm;
 - 3.2.1.2.3 Ordem de inflamação: . . .
 - 3.2.1.3 Cilindrada (s): . . . cm³;
 - 3.2.1.4 Taxa de compressão volumétrica (2): ...
- 3.2.1.5 Desenhos da câmara de combustão, face superior do êmbolo e, no caso de motores de ignição comandada, segmentos: . . .
- 3.2.1.6 Velocidade de marcha lenta sem carga $(^{2}): \dots \min^{-1};$
- 3.2.1.8 Potência útil máxima (t): . . . kW a . . . min⁻¹ (valor declarado pelo fabricante);
- 3.2.1.9 Velocidade máxima admitida do motor conforme prescrito pelo fabricante: . . . min⁻¹;

- 3.2.4 Alimentação de combustível:
- 3.2.4.2 Por injecção de combustível (ignição por compressão apenas): sim/não (1):
 - 3.2.4.2.1 Descrição do sistema: . . .
- 3.2.4.2.2 Princípio de funcionamento: injecção directa/pré-câmara/câmara de turbulência (¹);
 - 3.2.4.2.3 Bomba de injecção:
 - 3.2.4.2.3.1 Marca(s): . . .
 - 3.2.4.2.3.2 Tipo(s): . . .
- 3.2.4.2.3.3 Débito máximo de combustível $\binom{1}{2}$: . . . mm³/curso ou ciclo à velocidade da bomba de: ... min-1 ou, alternativamente, um diagrama característico: . .
 - 3.2.4.2.3.4 Regulação da injecção (²): . . .
 - 3.2.4.2.3.5 Curva do avanço da injecção (2): ...
- 3.2.4.2.3.6 Procedimento de calibração: banco de ensaio/motor (1);
 - 3.2.4.2.4 Regulador:
 - 3.2.4.2.4.1 Tipo: . . .
 - 3.2.4.2.4.2 Ponto de corte:
 - 3.2.4.2.4.2.1 Ponto de corte em carga: ... min⁻¹;
 - 3.2.4.2.4.2.2 Ponto de corte sem carga: ... min⁻¹;
 - 3.2.4.2.5 Tubagem de injecção:
 - 3.2.4.2.5.1 Comprimento: . . . mm;
 - 3.2.4.2.5.2 Diâmetro interno: . . . mm;
 - 3.2.4.2.6 Injector(es):
 - 3.2.4.2.6.1 Marca(s): . . .
 - 3.2.4.2.6.2 Tipo(s): . . .
- 3.2.4.2.6.3 Pressão de abertura (2): ... kPa ou diagrama característico (2): . . .
 - 3.2.4.2.7 Sistema de arranque a frio:
 - 3.2.4.2.7.1 Marca(s): . . .
 - 3.2.4.2.7.2 Tipo(s): . . . 3.2.4.2.7.3 Descrição: . . .

 - 3.2.4.2.9 Unidade electrónica de comando:
 - 3.2.4.2.9.1 Marca(s): . . .
 - 3.2.4.2.9.2 Descrição do sistema: . . .
 - 3.2.4.4 Bomba de alimentação:
- 3.2.4.4.1 Pressão (2): ... kPa ou diagrama característico $(^2)$: . . .
- 3.2.7 Sistema de arrefecimento (por líquido/por ar) (1);
 - 3.2.8 Sistema de admissão:
 - 3.2.8.1 Sobrealimentador: sim/não (1):
 - 3.2.8.1.1 Marca(s): . . .
 - 3.2.8.1.2 Tipo(s): . . .
- 3.2.8.1.3 Descrição do sistema (por exemplo, pressão máxima de sobrealimentação: ... kPa, válvula de descarga, se aplicável): . . .
- 3.2.8.2 Permutador de calor do ar de sobrealimentação: sim/não (1);
- 3.2.8.3 Depressão na admissão à velocidade nominal do motor e a 100% de carga:

Mínima admissível: . . . kPa;

Máxima admissível: . . . kPa;

- 3.2.8.4 Descrição e desenhos das tubagens de admissão e respectivos acessórios (câmara de admissão, dispositivo de aquecimento, entradas de ar adicionais, etc.):
- 3.2.8.4.1 Descrição do colector de admissão (incluir desenhos e ou fotografias): . . .
 - 3.2.8.4.2 Filtro de ar, desenhos: . . .ou
 - 3.2.8.4.2.1 Marca(s): . . .
 - 3.2.8.4.2.2 Tipo(s): . . .

- 3.2.8.4.3 Silencioso de admissão, desenhos: . . . ou:
- 3.2.8.4.3.1 Marca(s): . . .
- 3.2.8.4.3.2 Tipo(s):...
- 3.2.9 Sistema de escape:
- 3.2.9.1 Descrição e ou desenho do colector de escape: . . .
- 3.2.9.2 Descrição e ou desenho do sistema de escape: . . .
- 3.2.9.3 Contrapressão de escape máxima admissível à velocidade nominal do motor e a 100% de carga: . . . kPa;
- 3.2.10 Secções transversais mínimas das janelas de admissão e de escape: . . .
- 3.2.11 Regulação das válvulas ou dados equivalentes:
- 3.2.11.1 Elevação máxima das válvulas, ângulos de abertura e de fecho ou indicações respeitantes a sistemas alternativos de distribuição, em relação aos pontos mortos superiores: . . .
- 3.2.11.2 Gamas de referência e ou de regulação (¹): . . .
 - 3.2.12 Medidas tomadas contra a poluição do ar:
- 3.2.12.2 Dispositivos antipoluição adicionais (se existirem e se não forem abrangidos por outra rubrica):
 - 3.2.12.2.1 Catalisador: sim/não (1):
- 3.2.12.2.1.1 Quantidade de catalisadores e elementos: . . .
- 3.2.12.2.1.2 Dimensões, forma e volume do(s) catalisador(es): . . .
 - 3.2.12.2.1.3 Tipo de acção catalítica: . . .
 - 3.2.12.2.1.4 Carga total de metal precioso: . . .
 - 3.2.12.2.1.5 Concentração relativa: . . .
 - 3.2.12.2.1.6 Substrato (estrutura e material): ...
 - 3.2.12.2.1.7 Densidade das células: . . .
- 3.2.12.2.1.8 Tipo de alojamento do(s) catalisador(es): . . .
- 3.2.12.2.1.9 Localização do(s) catalisador(es)
- (lugar e distância de referência na linha de escape): . . . 3.2.12.2.4 Recirculação dos gases de escape: sim/não (¹):
 - 3.2.12.2.4.1 Características (caudal, etc.): . . .
 - 3.2.12.2.6 Colector de partículas: sim/não (¹):
- 3.2.12.2.6.1 Dimensões, forma e capacidade do colector de partículas: . . .
- 3.2.12.2.6.2 Tipo e concepção do colector de partículas: . . .
- 3.2.12.2.6.3 Localização (distância de referência na linha de escape): . . .
- 3.2.12.2.6.4 Método ou sistema de regeneração, descrição e ou desenho: . . .
- 3.2.12.2.7 Outros sistemas (descrição e funcionamento): . . .
- 3.2.13 Localização do símbolo do coeficiente de absorção (motores de ignição por compressão apenas): . . .
 - 4 Transmissão (v):
 - 4.3 Momento de inércia do volante do motor: . . .
- 4.3.1 Momento de inércia adicional não estando nenhuma velocidade engrenada: . . .
 - ... (data, processo).
 - (¹) Riscar o que não interessa.
- (2) Os números dos pontos e as notas de pé-de-página utilizados nesta ficha de informações correspondem aos do anexo I do Regulamento da Homologação CE de Modelo de Automóveis e Reboques, Seus Sistemas, Componentes e Unidades Técnicas, aprovado pelo

Decreto-Lei n.º 72/2000, de 6 de Maio, com a última redacção conferida pelo Decreto-Lei n.º 178/2005, de 28 de Outubro. Os pontos não relevantes para efeitos do presente Regulamento são omitidos.

ADENDA AO ANEXO I

Informação sobre as condições de ensaio

- 1 Lubrificante utilizado:
- 1.1 Marca: . .
- 1.2 Tipo: ... (indicar a percentagem de óleo na mistura se o lubrificante e o combustível forem misturados).
 - 2 Comportamento funcional do motor:
- 2.1 Potência aos seis regimes de medição referidos no n.º 2.1 do anexo IV: . . .
- 2.1.1 Potência do motor medida no banco de ensaios: . . .
 - 2.1.2 Potência medida nas rodas do veículo: ...

Regime do motor (min ⁻¹)	Potência medida (kW)
1— 2— 3— 4— 5—	

ANEXO II

(a que se referem o n.º 2 do artigo 3.º, o n.º 1 do artigo 4.º e o n.º 2 do artigo 9.º do Regulamento)

Modelo

[Formato máximo: A4 (210 × 297 mm)]

Ficha de homologação CE

Carimbo da autoridade administrativa

Comunicação relativa à:

Homologação (1);

Extensão da homologação (1);

Recusa da homologação (1);

Revogação da homologação (1);

de um modelo/tipo (¹) de veículo/componente/unidade técnica (¹) no que diz respeito à Directiva n.º.../CEE, com a última redacção que lhe foi dada pela Directiva n.º.../.../CE.

Número da homologação: ...

Razão da extensão: . . .

SECÇÃO I

- 0.1 Marca (firma do fabricante): . . .
- 0.2 Modelo/tipo (¹) e designação(ões) comercial(is) geral(is): . . .
- 0.3 Meios de identificação do modelo/tipo (¹), se marcados no veículo/componente/unidade técnica (¹) (²):...
 - 0.3.1 Localização dessa marcação: . . .
 - 0.4 Categoria do veículo (1) (3): . . .
 - 0.5 Nome e morada do fabricante: . . .
- 0.7 No caso de componentes e unidades técnicas, localização e método de fixação da marca de homologação CE...
 - 0.8 Morada(s) da(s) linha(s) de montagem: ...

SECÇÃO II

- 1 Informações adicionais (se aplicável): v. adenda.
- 2 Serviço técnico responsável pela realização dos ensaios: . . .
 - 3 Data do relatório de ensaio: . . .
 - 4 Número do relatório de ensaio: . . .
 - 5 Eventuais observações: v. apêndice.
 - 6 Local: . . .
 - 7 Data: . . .
 - 8 Assinatura: . . .
- 9 Está anexado o índice do *dossier* de homologação, que está arquivado nas autoridades de homologação e pode ser obtido a pedido.
 - Riscar o que não interessa.
- (2) Se os meios de identificação do modelo/tipo contiverem caracteres não relevantes para a descrição dos modelos/tipos de veículo, componente ou unidade técnica abrangidos por esta ficha de homo-
- componente ou unidade técnica abrangidos por esta ficha de homologação, tais caracteres devem ser representados na documentação por meio do símbolo «?» (por exemplo ABC??123??).

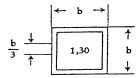
 (3) Conforme definida na parte A do anexo II do Regulamento da Homologação CE de Modelo de Automóveis e Reboques, Seus Sistemas, Componentes e Unidades Técnicas, aprovado pelo Decreto-Lei n.º 72/2000, de 6 de Maio, com a última redacção conferida pelo Decreto-Lei n.º 178/2005, de 28 de Outubro.

ADENDA À FICHA DE HOMOLOGAÇÃO CE N.º . . .

(relativa à homologação de um veículo no que diz respeito à Directiva n.º 72/306/CEE, com a última redacção que lhe foi dada pela Directiva n.º . . ./.../CE)

- 1 Informações adicionais:
- 1.1 Motor:
- 1.1.1 Código do fabricante para o motor (conforme marcado no motor, ou outro meio de identificação): . . .
 - 1.2 Resultados do ensaio:
 - 1.2.1 A regimes estabilizados:

Regime do motor (min ⁻¹)	Caudal nominal G (litros/segundo)	Valores limite de absorção (m ⁻¹)	Valores medidos da absorção (m ⁻¹)
1—	 		


- 1.2.2 Em aceleração livre: 1.2.2.1 Valor medido do coeficiente de absor-
- ção: ... m⁻¹;

 1.2.2.2 Valor corrigido do coeficiente de absorção: . . . m⁻¹;
- 1.2.2.3 Localização do símbolo do coeficiente de absorção no veículo: . . .
 - 5 Observações: . . .

ANEXO III

(a que se refere o n.º 3 do artigo 4.º do Regulamento)

Exemplo de esquema do símbolo do valor corrigido do coeficiente de absorção

Dimensões mínimas de b = 5,6 mm

O símbolo acima indica que o valor corrigido do coeficiente de absorção é de 1,30 m⁻¹.

ANEXO IV

(a que se referem os artigos 6.°, 7.°, 9.° e 10.° do Regulamento)

Ensaio a regimes estabilizados na curva de plena carga

- 1 Introdução:
- 1.1 O presente anexo descreve o método que permite determinar as emissões de poluentes a diferentes regimes estabilizados na curva de plena carga.
- 1.2 O ensaio pode ser efectuado quer num motor quer num veículo.
 - 2 Princípio da medição:
- 2.1 Procede-se à medição da opacidade dos gases de escape produzidos pelo motor, com este a funcionar a plena carga e a regime estabilizado. Efectuam-se seis medições repartidas de modo uniforme entre o regime correspondente à potência máxima do motor e o maior dos dois regimes de rotação do motor seguintes:

45 % do regime de rotação correspondente à potência máxima;

1000 rot/mn.

Os pontos extremos de medida devem estar situados nas extremidades do intervalo acima definido.

2.2 — Para os motores diesel munidos de um dispositivo de sobrealimentação de ar que pode ser accionado livremente e para os quais a entrada em funcionamento do dispositivo de sobrealimentação de ar provoca automaticamente um aumento da quantidade de combustível injectado, as medições são efectuadas com e sem sobrealimentação.

Para cada regime de rotação, o resultado da medição é constituído pelo maior dos dois valores obtidos.

- 3 Condições de ensaio:
- 3.1 Veículo ou motor:
- 3.1.1 O motor ou o veículo é apresentado em bom estado mecânico. O motor deve estar rodado;
- 3.1.2 O motor deve ser ensaiado com os equipamentos previstos no anexo I;
- 3.1.3 As regulações do motor são as previstas pelo construtor e que figuram no anexo I;
- 3.1.4 O dispositivo de escape não deve ter nenhum orifício susceptível de provocar uma diluição dos gases emitidos pelo motor;
- 3.1.5 O motor deve estar nas condições normais de funcionamento previstas pelo construtor. Em particular, a água de arrefecimento e o óleo devem estar à temperatura normal prevista pelo construtor.
- 3.2 Combustível o combustível a utilizar é o combustível de referência, especificado no anexo XII do Regulamento Respeitante ao Nível das Emissões Poluentes Provenientes dos Motores Alimentados a Diesel, Gás Natural Comprimido ou Gás de Petróleo Liquefeito Utilizados em Automóveis, aprovado pelo Decreto-Lei n.º 13/2002, de 26 de Janeiro, com a última redacção conferida pelo Decreto-Lei n.º 237/2002, de 5 de Novembro, e que é apropriado aos limites de emissões que servem de base para a homologação.
 - 3.3 Laboratório de ensaio:
- 3.3.1 A temperatura absoluta T do laboratório, expressa em graus Kelvin, e a pressão atmosférica H, expressa em Torricelli, são medidas, e procede-se ao cálculo do factor *F*, definido por:

$$F = \left(\frac{750}{H_s}\right)^{0.65} \times \left(\frac{T}{298}\right)^{0.5}$$

3.3.2 — Para que um ensaio seja válido, o factor F deve ser tal que $0.98 \le 1.02$.

- 3.4 Aparelhagem de recolha e de medida o coeficiente de absorção luminosa dos gases de escape deve ser medido com um opacímetro que satisfaz as condições do anexo VII e instalado em conformidade com o anexo VIII.
 - 4 Valores limites:
- 4.1 Para cada um dos seis regimes de rotação nos quais se efectuam as medidas do coeficiente de absorção luminosa por aplicação do n.º 2.1, procede-se ao cálculo do fluxo nominal do gás *G*, expresso em litros por segundo e definido pelas seguintes fórmulas:

Para os motores a dois tempos
$$G = \frac{Vn}{60}$$

Para os motores a quatro tempos $G = \frac{Vn}{120}$

V = cilindrada do motor expressa em litros;

n = regime de rotação do motor expresso em voltas por minuto.

4.2 — Para cada regime de rotação, o coeficiente de absorção luminosa dos gases de escape não deve ultrapassar o valor limite que figura no quadro do anexo VI. Quando o valor do fluxo nominal não é um dos que figuram neste quadro, o valor limite a reter é obtido por interpolação.

ANEXO V

(a que se referem os artigos 4.°, 7.°, 9.° e 11.° do Regulamento)

Ensaio em aceleração livre

- 1 Condições de ensaio:
- 1.1 O ensaio é efectuado no veículo ou no motor que foi sujeito ao ensaio a regimes estabilizados descrito no anexo IV:
- 1.1.1 Quando o ensaio é efectuado num motor no banco, deve ser realizado logo que possível a seguir ao ensaio de controlo da opacidade a plena carga em regime estabilizado. Em particular, a água de arrefecimento e o óleo devem estar às temperaturas normais indicadas pelo construtor;
- 1.1.2 Quando o ensaio é efectuado num veículo parado, o motor deve ser previamente posto em condições normais de funcionamento por meio de um percurso de estrada. O ensaio deve ser efectuado logo que possível no fim do percurso de estrada.
- 1.2 A câmara de combustão não deve ter sido arrefecida ou suja por um período de *ralenti* prolongado que preceda o ensaio.
- 1.3 As condições de ensaio definidas nos n.ºs 3.1, 3.2 e 3.3 do anexo iv são aplicáveis.
- 1.4 As condições relativas à aparelhagem de recolha e de medida definidas no n.º 3.4 do anexo IV são aplicáveis.
 - 2 Modalidades de ensaio:
- 2.1 Quando o ensaio é efectuado no banco, o motor é separado do freio, que é substituído ou pelos órgãos em rotação movidos quando a caixa de velocidades está em ponto morto, ou por uma inércia sensivelmente equivalente à destes órgãos.
- 2.2 Quando o ensaio é efectuado num veículo, a caixa de velocidades é colocada em posição de ponto morto e o motor está embraiado.
- 2.3 Com o motor a girar em regime de *ralenti*, acciona-se rapidamente, mas não bruscamente, o comando do acelerador, de modo a obter o débito máximo da bomba de injecção. Esta posição é mantida

até à obtenção da velocidade de rotação máxima e até à intervenção do regulador. Esta velocidade alcançada, larga-se o acelerador até que o motor retome a sua velocidade de *ralenti* e que o opacímetro se encontre nas condições correspondentes.

- 2.4 A operação descrita no n.º 2.3 é repetida pelo menos seis vezes para limpar o sistema de escape e proceder eventualmente à regulação dos aparelhos. Anotam-se os valores máximos das opacidades alcançados em cada uma das acelerações seguintes até que se obtenham valores estabilizados. Não são tidos em conta os valores alcançados durante o período de abrandamento do motor, consecutivo a cada aceleração. Os valores lidos são considerados como estabilizados quando quatro valores consecutivos se situam numa banda cuja largura é igual a $0.25 \, \mathrm{m}^{-1}$ e não formam uma série decrescente. O coeficiente de absorção X_M considerado é a média aritmética destes quatro valores.
- 2.5 Os motores munidos de um sobrealimentador de ar são submetidos, se for caso disso, às seguintes prescrições especiais:
- 2.5.1 Para os motores com sobrealimentador de ar acopulado ou movido mecanicamente pelo motor e desembraiável, procede-se a dois processos completos de medida com acelerações preliminares, com o sobrealimentador embraiado num caso e desembraiado no outro. O resultado considerado da medição é o mais elevado dos dois resultados obtidos;
- 2.5.2 Para os motores com sobrealimentador de ar que podem ser postos fora de serviço por meio de um desvio cujo comando é deixado à disposição do condutor, o ensaio deve ser efectuado com e sem desvio. O resultado considerado da medição é o mais elevado dos resultados obtidos.
- 3 Determinação do valor corrigido do coeficiente de absorção:
 - 3.1 Notações designa-se por:

 X_M o valor do coeficiente de absorção em aceleração livre medido como previsto no n.º 2.4;

 X_L o valor corrigido do coeficiente de absorção em aceleração livre;

 S_M o valor do coeficiente de absorção medido a regime estabilizado (n.º 2.1 do anexo IV) que é o mais próximo do valor limite prescrito correspondente ao mesmo fluxo nominal;

- S_L o valor do coeficiente de absorção (n.º 4.2 do anexo IV) para o fluxo nominal correspondente ao ponto de medida que conduziu ao valor S_M ;
- L o comprimento efectivo do raio luminoso no opacímetro.
- 3.2 Com os coeficientes de absorção expressos em m⁻¹ e o comprimento efectivo do raio luminoso expresso em metros, o valor corrigido X_L é dado pelo mais pequeno das duas expressões seguintes:

$$X_L = \frac{S}{S_M^L} \bullet X_L^{"} = X_M + 0.5$$

ANEXO VI
(a que se referem os artigos 6.º e 7.º do Regulamento)

Fluxo nominal G (litros/segundo)	Coeficiente de absorção K (m ⁻¹)
≤42	2,26
45	2,19
50	2,08

	i
Fluxo nominal G (litros/segundo)	Coeficiente de absorção K (m ⁻¹)
(litros/segundo) 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130	(m ⁻¹) 1,985 1,90 1,84 1,775 1,72 1,665 1,62 1,575 1,535 1,495 1,465 1,425 1,395 1,37 1,345 1,345 1,32
135 140 145 150 155 160 165 170 175 180 185 190 195 ≥ 200	1,30 1,27 1,25 1,225 1,205 1,19 1,17 1,155 1,14 1,125 1,11 1,095 1,08

Nota. — Embora os valores acima estejam arredondados ao centésimo ou aos 5 milésimos mais próximos, não significa que as medidas devem ser efectuadas com esta precisão.

ANEXO VII

(a que se refere o n.º 4 do artigo 7.º do Regulamento)

Características dos opacímetros

- 1 Domínio de aplicação o presente anexo define as condições a que devem obedecer os opacímetros destinados a serem utilizados nos ensaios descritos nos anexos IV e V.
 - 2 Especificações de base para os opacímetros:
- 2.1 O gás a medir está contido num recinto cuja superfície interna não seja reflectora.
- 2.2 O comprimento efectivo do trajecto dos raios luminosos através do gás a medir é determinado tendo em conta a influência possível dos dispositivos de protecção da fonte luminosa e da célula fotoeléctrica. Este comprimento efectivo deve estar indicado no aparelho.
- 2.3 O indicador de medida do opacímetro deve ter duas escalas de medida, uma em unidades absolutas de absorção luminosa de 0 a ∞ (m⁻¹) e a outra linear de 0 a 100; as duas escalas de medida estendem-se de 0 para o fluxo luminoso total até ao máximo da escala para o obscurecimento completo.
 - 3 Especificações de construção:
- 3.1 Ĝeneralidades o opacímetro deve ser tal que, nas condições de funcionamento a regimes estabilizados, a câmara de fumo deve ser cheia com fumo de opacidade uniforme.
 - 3.2 Câmara de fumo e «cárter» do opacímetro:
- 3.2.1 As incidências sobre a célula fotoeléctrica de luz parasita devida às reflexões internas ou aos efeitos de difusão devem ser reduzidas ao mínimo (por exemplo, pelo revestimento das superfícies internas a negro-mate e por uma disposição geral apropriada);
- 3.2.2 As características ópticas devem ser tais que o efeito combinado da difusão e da reflexão não exceda

uma unidade da escala linear, quando a câmara de fumo é cheia com um fumo tendo um coeficiente de absorção vizinho de 1,7 m⁻¹.

- 3.3 Fonte luminosa a fonte luminosa deve ser uma lâmpada incandescente com uma temperatura de cor na gama dos 2800 K a 3250 K ou um díodo emissor de luz (LED) verde com um pico espectral compreendido entre 550 nm e 570 nm. A fonte luminosa deve ser protegida contra a deposição de fuligem por meios que não influenciem o comprimento do percurso óptico para além das especificações do fabricante.
 - 3.4 Homologação:
- 3.4.1 O receptor é constituído por uma célula fotoeléctrica com uma curva de resposta espectral semelhante à curva fotópica do olho humano (máximo de resposta na banda de 550 nm/570 nm, menos de 4% desta resposta máxima abaixo de 430 nm e acima de 680 nm):
- 3.4.2 A construção do circuito eléctrico contendo o indicador de medida deve ser tal que a corrente de saída da célula fotoeléctrica seja uma função linear da intensidade luminosa recebida na zona de temperaturas de funcionamento da célula fotoeléctrica.
 - 3.5 Escalas de medida:
- 3.5.1 O coeficiente de absorção luminosa K é calculado pela fórmula $\Phi = \Phi_o \cdot e^{-kl}$, em que L é o comprimento efectivo do trajecto dos raios luminosos através do gás a medir, Φ_o o fluxo incidente e Φ o fluxo emergente. Quando o comprimento efectivo de L de um tipo de opacímetro não pode ser directamente avaliado a partir da sua geometria, o comprimento efectivo L deve ser determinado:

Quer pelo método descrito no n.º 4;

Quer por comparação com um outro tipo de opacímetro de que se conhece o comprimento efectivo;

3.5.2 — A relação entre a escala linear de 0 a 100 e o coeficiente de absorção K é determinado pela fórmula:

$$K = -\frac{1}{L}\log_c\left(1 - \frac{N}{100}\right)$$

em que N representa uma leitura da escala linear e K o valor correspondente do coeficiente de absorção;

- 3.5.3 O indicador de medida do opacímetro deve permitir ler um coeficiente de absorção de 1,7 m⁻¹ com uma precisão de 0,025 m⁻¹.
- 3.6 Regulação e verificação do aparelho de medida:
- 3.6.1 O circuito eléctrico da célula fotoeléctrica e do indicador deve ser regulável para poder levar a agulha a zero quando o fluxo luminoso atravessa a câmara de fumo cheia com ar limpo, ou uma câmara de características idênticas;
- 3.6.2 Com a lâmpada apagada e o circuito eléctrico de medida aberto ou em curto-circuito, a leitura na escala dos coeficientes de absorção é ∞ e, com o circuito de medida ligado, o valor lido deve permanecer ∞;
- 3.6.3 Uma verificação intermediária deve ser efectuada introduzindo na câmara de fumo um filtro que representa um gás cujo coeficiente de absorção conhecido k, medido como indica o n.º 3.5.1, está compreendido entre 1,6 m⁻¹ e 1,8 m⁻¹. O valor de k deve ser conhecido com uma precisão de 0,025 m⁻¹. A verificação consiste em controlar que este valor não difira mais de 0,05 m⁻¹ do lido no indicador de medida quando o

filtro é introduzido entre a fonte luminosa e a célula fotoeléctrica.

3.7 — Resposta do opacímetro:

- 3.7.1 O tempo de resposta do circuito eléctrico de medida, correspondente ao tempo necessário ao indicador para atingir um desvio de 90% da escala completa quando um écran que obscurece totalmente a célula fotoeléctrica é retirado, deve ser de 0,9 s a 1,1 s;
- 3.7.2 O amortecimento do circuito eléctrico de medida deve ser tal que o deslocamento inicial acima do valor final estável, após variação instantânea do valor de entrada (por exemplo, o filtro de verificação), não ultrapasse 4% deste valor em unidades da escala linear;
- 3.7.3 O tempo de resposta do opacímetro devido aos fenómenos físicos na câmara de fumo é o que decorre entre o início da entrada dos gases no aparelho de medida e o enchimento completo da câmara de fumo não deve ultrapassar 0,4 s;
- 3.7.4 Estas disposições são apenas aplicáveis aos opacímetros utilizados para as medições de opacidade em aceleração livre.
- 3.8 Pressão do gás a medir e pressão do ar de varrimento:
- 3.8.1 A pressão dos gases de escape na câmara de fumo não deve diferir da do ar ambiente em mais de 75 mm de coluna de água;
- 3.8.2 As variações de pressão do gás a medir e do ar de varrimento não devem provocar uma variação do coeficiente de absorção de mais de 0,05 m⁻¹ para um gás a medir que corresponde a um coeficiente de absorção de 1,7 m⁻¹;
- 3.8.3 O opacímetro deve ser equipado com dispositivo apropriado para a medição da pressão na câmara de fumo;
- 3.8.4 Os limites de variação da pressão do gás e do ar de varrimento na câmara de fumo são indicados pelo fabricante do aparelho.

3.9 — Temperatura do gás a medir:

- 3.9.1 Em todos os pontos da câmara de fumo, a temperatura do gás no momento da medida deve ser entre 70°C e uma temperatura máxima especificada pelo fabricante do opacímetro, de tal modo que as leituras nesta gama de temperaturas não variem mais de 0,1 m⁻¹ quando a câmara é cheia com um gás com um coeficiente de absorção de 1,7 m⁻¹;
- 3.9.2 O opacímetro deve estar equipado com dispositivos apropriados para a medição das temperaturas na câmara de fumo.
 - 4 Comprimento efectivo L do opacímetro:
 - 4.1 Generalidades:
- 4.1.1 Nalguns tipos de opacímetros, os gases não têm uma opacidade constante entre a fonte luminosa e a célula fotoeléctrica, ou entre as partes transparentes que protegem a fonte e a célula fotoeléctrica. Nestes casos, o comprimento efectivo *L* é o de uma coluna de gás de opacidade uniforme que conduz à mesma absorção da luz que a observada quando o gás atravessa normalmente o opacímetro;
- 4.1.2— O comprimento efectivo do trajecto dos raios luminosos é obtido comparando a leitura N no opacímetro que funciona normalmente com a leitura N_o obtida com o opacímetro modificado de tal modo que o gás de ensaio preencha um comprimento L_o bem definido;
- 4.1.3 Devem-se efectuar leituras comparativas em rápida sucessão para determinar a correcção do deslocamento do zero.

- 4.2 Método de avaliação de *L*:
- 4.2.1 Os gases de ensaio devem ser gases de escape com opacidade constante ou gases absorventes tendo uma densidade da mesma ordem da dos gases de escape;
- 4.2.2 Determina-se com precisão uma coluna do opacímetro de comprimento L_o que pode ser cheia uniformemente com os gases de ensaio e cujas bases são sensivelmente perpendiculares à direcção dos raios luminosos. Este comprimento L_o deve ser próximo do comprimento efectivo suposto do opacímetro;
- 4.2.3 Procede-se à medição da temperatura média dos gases de ensaio na câmara de fumo.
- 4.2.4 Se necessário, pode ser incorporado, na canalização de recolha, tão próxima quanto possível da sonda, um vaso de expansão de forma compacta e com uma capacidade suficiente para amortecer as pulsações. Pode-se também instalar um refrigerador. A inclusão do vaso de expansão e do refrigerador não deve perturbar indevidamente a composição dos gases de escape;
- 4.2.5 O ensaio para a determinação do comprimento efectivo consiste em fazer passar uma amostra dos gases de ensaio alternadamente através do opacímetro que funciona normalmente e através do mesmo aparelho modificado como foi indicado no n.º 4.1.2;
- 4.2.5.1 As indicações dadas pelo opacímetro devem ser registadas continuamente durante o ensaio com um registador cujo tempo de resposta é no máximo igual ao do opacímetro;
- 4.2.5.2 Com o opacímetro a funcionar normalmente, a leitura da escala linear é *N* e a da temperatura média dos gases expressa em graus Kelvin é *T*;
- 4.2.5.3 Com o comprimento conhecido L_o cheio com o mesmo gás de ensaio, a leitura da escala linear é N_o e a da temperatura média dos gases expressa em graus Kelvin é T_o ;
 - 4.2.6 O comprimento efectivo é:

$$L = L_O \frac{T}{T_o} \frac{\log\left(1 - \frac{N}{100}\right)}{\log\left(1 - \frac{N_o}{100}\right)}$$

4.2.7 — O ensaio deve ser repetido com pelo menos quatro gases de ensaio que conduzam a indicações espaçadas regularmente numa escala linear de 20 a 80;

4.2.8 — O comprimento efectivo L do opacímetro é a média aritmética dos comprimentos efectivos obtidos do modo descrito no n.º 4.2.6, com cada um dos gases de ensaio.

ANEXO VIII

(a que se referem os ensaios descritos nos artigos 10.º e 11.º do Regulamento)

Instalação e utilização do opacímetro

- 1 Domínio de aplicação o presente anexo define a instalação e utilização dos opacímetros destinados a serem utilizados nos ensaios descritos nos anexos IV e V.
 - 2 Opacímetro de recolha:
- 2.1 Înstalação para os ensaios a regimes estabilizados:
- 2.1.1 A relação entre a área de secção da sonda e a do tubo de escape deve ser de pelo menos 0,05. A contrapressão medida no tubo de escape à entrada da sonda não deve ultrapassar 75 mm de água;
- 2.1.2 A sonda é um tubo com uma extremidade aberta para a frente, no eixo do tubo de escape ou do prolongamento eventualmente necessário. A sonda deve estar na secção onde a distribuição do fumo é

mais ou menos uniforme. Para realizar esta condição, a sonda deve ser colocada o mais a jusante possível do tubo de escape ou, se necessário, no tubo de prolongamento, de tal modo que, sendo D o diâmetro do tubo de escape à saída, a extremidade da sonda esteja situada numa parte rectilínea com um comprimento de pelo menos 6 D a montante do ponto de recolha e pelo menos 3 D a jusante. Se é utilizado um tubo de prolongamento, devem ser evitadas as entradas de ar na junção:

- 2.1.3 A pressão no tubo de escape e as características de queda de pressão na canalização de recolha devem ser tais que a sonda recolha uma amostra sensivelmente equivalente à que seria obtida por uma recolha isocinética;
- 2.1.4 Se necessário, pode ser incorporado na canalização de recolha, tão perto quanto possível da sonda, um vaso de expansão de forma compacta e com uma capacidade suficiente para amortecer as pulsações. Pode-se também instalar um refrigerador. O vaso de expansão e o refrigerador devem ser concebidos de modo a não perturbar indevidamente a composição dos gases de escape;
- 2.1.5 Uma válvula de borboleta, ou um outro meio de aumentar a pressão de recolha, pode ser colocada no tubo de escape a menos de 3 D a jusante da sonda de recolha;
- 2.1.6 As tubagens entre a sonda, o dispositivo de arrefecimento, o vaso de expansão (se necessário) e o opacímetro devem ser tão curtos quanto possível, desde que satisfaçam as exigências de pressão e de temperatura previstas nos n.º 3.8 e 3.9 do anexo VII. A tubagem deve apresentar uma inclinação ascendente desde o ponto de amostragem até ao opacímetro, e devem-se evitar ângulos agudos onde a fuligem se possa acumular. Se uma válvula de desvio não está incorporada no opacímetro, deve sê-lo a montante;
- 2.1.7 No decurso do ensaio, verifica-se se as prescrições do n.º 3.8 do anexo VII, relativas à pressão, e as do n.º 3.9 do referido anexo, relativas à temperatura na câmara de medida, são respeitadas.
- 2.2 Instalação para os ensaios em aceleração livre: 2.2.1 A relação entre a área da secção da sonda e a do tubo de escape deve ser de pelo menos 0,05. A contra-pressão medida no tubo de escape à entrada da sonda não deve ultrapassar 75 mm de água;
- 2.2.2 A sonda é um tubo com uma extremidade aberta para a frente, no eixo do tubo de escape ou do prolongamento eventualmente necessário. A sonda deve estar na secção onde a distribuição do fumo é mais ou menos uniforme. Para realizar esta condição, a sonda deve ser colocada o mais a jusante possível do tubo de escape ou, se necessário, no tubo de prolongamento, de tal modo que, sendo D o diâmetro do tubo de escape à saída, a extremidade da sonda esteja situada numa parte rectilínea com um comprimento de pelo menos 6 D a montante do ponto de recolha e de pelo menos 3 D a jusante. Se é utilizado um tubo de prolongamento, devem ser evitadas as entradas de ar na junção;
- 2.2.3 O sistema de amostragem deve ser tal que, a todas as velocidades do motor, a pressão da amostra no opacímetro esteja dentro dos limites especificados no n.º 3.8.2 do anexo VII. Isto pode ser verificado anotando a pressão da amostra em *ralenti* e à velocidade máxima sem carga. Conforme as características do opacímetro, o controlo da pressão da amostra é conseguido por um retentor fixo ou por uma válvula de borboleta no tubo de escape ou no tubo de ligação. Qualquer

que seja o método utilizado, a contrapressão medida no tubo de escape à entrada da sonda não deve ultrapassar 75 mm de água;

- 2.2.4 Os tubos de ligação ao opacímetro devem ser tão curtos quanto possível. O tubo deve apresentar uma inclinação ascendente desde o ponto de recolha até ao opacímetro, e devem-se evitar ângulos agudos onde a fuligem se possa acumular. Pode ser prevista uma válvula de desvio antes do opacímetro para o isolar do fluxo dos gases de escape, salvo quando da medição.
- 3 Opacímetro de fluxo total as únicas precauções gerais a observar nos ensaios a regimes estabilizados e em aceleração livre são as seguintes:
- 3.1 As ligações dos tubos entre a tubagem de escape e o opacímetro não devem permitir a entrada de ar exterior;
- 3.2 Os tubos de ligação com o opacímetro devem ser tão curtos quanto possível, como previsto para os opacímetros de recolha. O sistema de tubagem deve apresentar uma inclinação ascendente, desde a tubagem de escape até ao opacímetro, e devem-se evitar ângulos agudos em que a fuligem se possa acumular. Pode ser prevista uma válvula de desvio antes do opacímetro para o isolar do fluxo dos gases de escape, salvo durante a medição.
- 3.3 Pode igualmente ser necessário um sistema de arrefecimento a montante do opacímetro.

MINISTÉRIO DAS FINANÇAS E DA ADMINISTRAÇÃO PÚBLICA

Decreto-Lei n.º 68/2007

de 26 de Março

A Reforma Aduaneira, aprovada pelo Decreto-Lei n.º 46 311, de 27 de Abril de 1965, determina a cobrança de taxas de tráfego e de emolumentos pessoais previstas, respectivamente, nas tabelas I e II anexas ao mesmo decreto-lei.

A evolução da actividade aduaneira, por força da adopção do mercado único e da entrada em vigor do Código Aduaneiro Comunitário [Regulamento (CEE) n.º 2913/92, do Conselho, de 12 de Outubro] e respectivas disposições de aplicação [Regulamento (CEE) n.º 2454/93, da Comissão, de 2 de Julho], bem como a emergência de outras atribuições da Direcção-Geral das Alfândegas e dos Impostos Especiais sobre o Consumo, designadamente as relacionadas com administração dos impostos especiais sobre o consumo, exigem adaptações nas referidas tabelas de modo a adequá-las a novas realidades.

Visando garantir um equilíbrio entre a facilitação do comércio legítimo e os indispensáveis controlos aduaneiros, o quadro de taxas e emolumentos, cuja revisão ora se promove, assume características específicas, visto que integra, em exclusivo, prestações pecuniárias pagas pelos operadores económicos como contrapartida dos serviços públicos inerentes à actividade aduaneira, quando prestados em circunstâncias de maior comodidade e vantagem, isto é, fora da estância aduaneira ou do horário normal do respectivo funcionamento.

Concebidas há tão longo período de tempo e sujeitas, pela última vez, a actualizações pontuais em 1987, através do Decreto-Lei n.º 368/87, de 27 de Novembro, estão em causa contrapartidas financeiras manifestamente desactualizadas e desajustadas.